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Abstract-The heat transfer by gaseous suspension laminar flow of solid and/or liquid fine particles has 
been elucidated in the preceding papers by the authors when the thermal radiation predominates over other 
modes of heat transfer. In the present study an analysis is performed on the turbulent flow of the multiphase 
medium in a circular tube with constant wall temperature which is one of the most important problems in 
practice. The turbulent flow of gaseous suspension is, however, complicated in connection with the turbu- 
lent behaviors of the dispersed particles and the carrier fluid. Accordingly the tractable model has been 
employed by taking account of not only the radiative heat transfer to the particulate phase but the heat 
transfer between particles and surrounding fluid associated with turbulence. The reduced basic equations 
constitute simultaneous integro-differential equations which are solved numerically by the implicit finite 
difference method with iterative procedure of the radiative terms. Thereafter the calculated results on the 

temperature profiles and the heat transfer are examined in details. 

NOMENCLATURE 

AlJ’ surface area of single particle = I$ ; 

B, black body radiation = (a/?r)F; 

Cf 9 cp, specitic heats of gas and particles: 

2 particle diameter; 
fanning friction factor ; 

F(T,), integral defined by equation (28); 

&-J), total ditfusivity function for gas; 
integral defined by equation (12); 

h, local heat transfer coetficient; 
h P' heat transfer coefficient between 

particle and gas ; 
J W’ 

radiation intensity from the wall 

= (M?-4,; 
K(z,q, z,qr), integrals defined by equation 

(12); 

kf, thermal conductivity of gas; 

M, dimensionless parameter defined 
by equation (18); 

NR’ radiation-conduction interaction 
parameter defined by equation (15); 

* Presently, Shin Nippon Iron and Steel Manufacturing 
co. 

Nu,,, 

NU& T' 

N”<,c, 

Nut, R’ 

nP’ 

pr, 
qc, 

qR' 

qT’ 

r, 
+ 

iz’ 
R;?, 

S, 
T, T,, 
T 

m’ 

Nusselt number on heat transfer 
between particle and surrounding 
gas defined by equation (1) ; 
total local Nusselt number defined 
by equation (29); 
local Nusselt number by convection 
defined by equation (30); 
local Nusselt number by radiation 
defined by equation (31); 
number ofparticles per unit volume; 
Prandtl number = p/c,_/Ic,. ; 
convective heat flux defined by 
equation (26); 
radiative heat flux defined by equa- 
tion (27); 
total heat flux defined by equation 

(25); 
radial coordinate; 
dimensionless radial coordinate; 
pipe radius ; 
Reynolds number = 2u,,R/v /; 
distance defined by equation (5); 
temperatures of gas and particle; 
cup-mixing mean temperature of 
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flowing gaseous suspensions; 
T 

<: 

inlet temperature; 
wall temperature; 

u13 up, axial velocities of gas and particles; 
a+, dimensionless axial velocity; 
u, dimensionless axial velocity = u/urn ; 
V 

P’ 
volume of a particle = (rc/6)dz ; 

x, axial coordinate; 

Yf, dimensionless coordinate. 

Greek symbols 
thermal loading ratio defined by 
equation (14); 
surface emissivity of particle; 
eddy diffusivities for heat in gaseous 
and particulate phase; 
eddy diffusivity for momentum; 
dimensionless radial coordinate = 

rlR ; 
lattice spacing in the radial direc- 
tion; 
dimensionless temperatures of gas 
and particles ; 
dimensionless cup-mixing mean 
temperature of flowing gaseous 
suspensions defined by equation 
(34); 
dimensionless temperatures of gas 
particles, defined by equations (32) 
and (33); 
dimensionless inlet temperature; 
normalized dimensionless tempera- 
ture = (e - e,y(i - 8,); 
azimuthal angle shown in Fig. 2; 
absorption coefficient of dispersed 
particles defined by equation (7); 
viscosity of gas; 
kinematic viscosity of gas ; 
dimensionless axial coordinate = 
(x/R)/RePr ; 
lattice spacing in the axial direction; 
apparent density of dispersed par- 
ticles; 
densities of gas and particle 
material; 

5 

ZO’ 

Suffixes 
C, 
dp, 
f, 

; 

:, 
7: 
W, 

;; 

optical distance ; 

optical radius. 

convection; 
dispersed phase; 
gas (fluid); 
mean value; 
inlet; 
particle; 
radiation ; 
total; 
wall ; 
dummy variable; 
local. 

1. INTRODUCTION 

THE HEAT transfer by flowing suspensions has 
the following prominent characteristics [l, 21: 

(i) Flowing suspensions can tit for the operation 
at very high heat flux, due to the increased 
volumetric heat capacity of the medium. 

(ii) At very high temperature, the radiative heat 
transfer can be improved as compared with gas 
alone because of the large absorptivity of the 
cloud of fine particles. 

(iii) The improvement in the convective heat 
transfer with flowing suspensions over that with 
a pure gas can be expected due to the reduction 
of viscous sublayer thickness by the turbulence 
created by the random motion of particles in 
case of turbulent flow and so forth. 

In the preceding studies the numerical analyses 
have been performed on the heat transfer with 
fully developed laminar flow of a suspension of 
fine particles between parallel plates [l] and in 
a circular tube [2]. 

In consequence, it is clarified that flowing 
gaseous suspensions arc applicable to the heat 
transfer in high heat flux and high temperature 
systems and have the wide l ppliutions in 
industry, due to the basic nature discussed above. 

The present analysis is concerned with the 
turbulent flow in a circular tube and it is, how- Stefan-Boltzmann constant; 



RADIATTVE HEAT TRANSFER BY 

ever, inevitable to exclude the detailed discus- 
sion on the turbulent behaviour of multiphase 
flow because of the veiled situation of the mecha- 
nism of multiphase turbulence. Hence, both 
physically and intuitively reasonable model is 
set up by taking account of the ‘particulate 
character’ of dispersed phase relating to the 
conductive, convective and radiative heat trans- 
fer. 

2. ANALYSIS 

2.1 Description of the problem 
The coordinate system of the flow field is 

shown in Fig. 1. The mechanism of turbulence in 

FIG. I. Cylindrical coordinate system. 

flowing gaseous suspensions of fine particles is 
so complicated that no information on the eddy 
diffusivities for the heat or momentum of the 
particles and the gas, either experimentally or 
analytically, is available so far. In the present 
analysis, therefore, it is assumed as done by 
Tien et al. [3] that the eddy diffusivity of the 
particles are equal to zero (that is, Q p = 0) and 
the presence of particles has a negligible effect 
on the eddy diffusivity of the gas. It is readily 
seen that this is a close approximation to the 
actual system when the particles are very small 
and the loading ratio is less than or equal to 
unity. 

The Nusselt number on the heat transfer 
between the particle and the gas, Nu, in equation 
(18), may be a function of the radial position r, 
due to the flow being turbulent near the particles, 
so that the Nusselt number NUT is assumed in the 
following form 

FLOWING MULTIPHASE MEDIUM 1201 

hd 
Nu, = r = 2. gr. 

This relationship has no theoretical or experi- 
mental ground except that this seems to be 
physically and intuitively acceptable. Here, 
g, = 1 + (+, &vf)Pr and the value of Nu, = 2 
corresponds to the case by pure conduction in 
the viscous sublayer in which the turbulent 
fluctuations vanish. 

In addition to the subjects discussed above the 
following assumptions are introduced into the 
analysis 

(9 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

The pipe wall is isothermal (T’ = constant) 
and black for thermal radiation. 
The flow field of the two phases is hydro- 
dynamically fully developed from the inlet 
and has a turbulent velocity distribution. 
The temperatures of the particles and the 
gas are the same at the inlet. 
The pysical properties (such asp, c, CL, k, 
etc.) are constant. 
The particles are spheres of uniform size 
and thermal conductivity of which is large 
enough to neglect radial variation of tem- 
perature within the sphere. 
The particles are uniformly distributed 
throughout the pipe cross section, and 
emit and absorb thermal radiation as a 
gray fluid in local thermodynamic equi- 
librium, but do not scatter.* The gas is 
transparent for radiation. 
The particles are sufficiently small and 
numerous to be considered as a continuum 
for thermal radiation. 
The time-mean velocities of the two 
phases are equal and the presence of the 
particles has no effect on the velocity 
profile and the friction factor of the gas. 

(viii) The agglomeration, chemical reaction of 
the particles and viscous dissipation are 
not considered. 

* When the radiating medium is enclosed by solid sur- 
face(s) the isotropic scattering does not influence the radi- 
ative heat transfer, though the optical thickness of the 
medium is increased [4]. 
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(ix) The energy transports by collisions among 
particles or with the wall are negligible as 
compared with those by conduction and 
radiation. 

2.2 The basic equations and their numerical 
solution 

On the foregoing postulation mentioned 
above, a heat balance in pipe flow yields the basic 
equations governing the temperature field. For 
the gas 

(2) 

and for the particles 

cfpdpup 2 + nphpA,(Tp - T,) 

= :${reH,pp,,pz} - divq,. (3) 

The apparent density of the dispersed particles 
pd is assumed constant everywhere and pdP is 
re ated to the density p, with the following f 
equation 

(4) 

The first term in both equation (2) and equation 
(3) describes heat convected along the pipe; 
the second term is the heat transfer rate between 
the phases (an identical term in both equations) 
whilst the first term on the right hand side of the 
equations is the heat transferred radially due to 
eddy diffusion. For the gas, molecular conduc- 
tion is assumed to contribute additively to radial 
heat transfer whereas there is considered to be 
no similar term for the particles. 

Let us consider the geometrical configuration 
for the radiative heat flux in Fig. 2 where an 
arbitrary point is denoted by (x, r) and a dummy 
variable point by (x,, I~, 4). The distance S is 
then given by 

s = ((x, - x)2 + r2 + r; - 2rr, cos c$}* (5) 

FIG. 2. Geometrical configuration for radiative heat flux. 

and SW denotes the value of S when rl = R. 
Assuming the fluid to be in thermodynamic 

equilibrium and not to scatter, the divergence of 
the radiative heat flux vector [S] 

+m 2n 

- div qR = d,,, R(R - r) exp { - r(S,)). 

R +m 2rr 

d4 dx, 

s: 
+ K2 Br, 

s ss 
exp { - 4V 

0 -m 0 

X 
d$ dr, dxr _ 4nKB 

S2 
(6) 

where J,,, is the intensity of the wall, B is the 
blackbody radiation and z(s) is the optical 
distance defined by 

z(s) = s r@,)dS, 
0 

The absorption coeficient K is given by the 
projected cross section of particles normal to the 
radiative flux 

K=7C VP* (7) 

In deriving equation (6), the approximation of 
the one dimensional radiative heat flux is 
employed, based on the assumption that the 
radiative transfer in the axial direction is 
neglected as compared with the radial radiative 
heat transfer, i.e. 
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For the velocity distributions of the two 
phases, the expression developed by 
Reichardt [6] are used, that is for viscous sub- 
layer, y+ < 5 

for transition layer, 5 < y+ < 30 

U+ = -3.05+5.0my+,%f=$ 1-g - 1 

vf ( > 

(8b) 
for turbulent core, y+ 2 30 

U+ 5.5 1.5 = + 2.5 In yf (1 1 + + r/R) 1 2(r/ZX)2 ' 
?=%[I -(3][1+ 2($r] (8~) 

where 

u+ = (~/u,)/J(f/2), y+ = CylRX~e/2)~(f/2), 

y+ =R+ -I+ 

and the eddy diffusivity for heat Ed I is calcu- 
lated by use of the velocity distribution on the 
assumption that Ed i x sM /. For brevity the 
boundary conditions’ are taken as follows 

t= R; Tf = T, = T, 

r = 0; aTJar = aTJar = 0 (9) 

x = 0; 7 = T, = TO. 

Strictly speaking, however, the temperature 
discontinuity between the heated wall and the 
particles at the wall has to be included in the 
boundary condition, due to the absence of the 
conduction term in equation (3). The results 
obtained with conditions of equation (9) under- 
estimate the temperature gradient at the wall as 
compared with those obtained with the so-called 
“Radiation Slip” [7] condition, so that the heat- 
transfer characteristics are also underestimated. 
This effect is, however, expected to be small, 
because when the solid particles is travelling in 
the immediate neighborhood of the wall before 
hitting it, the temperature of the particles due 

to the local condition is very close to that of 
the wall. 

After transforming equation (6) according to 
the method of Heaslet and Warming [8] and 
transforming equations (2) and (3) into dimen- 
sionless forms with the assumption that 
Ur = UP = U, it was found after some manipu- 
lation, 
for the gas 

80, Uay + M($ - fJp) (10) 

and (when radial heat transfer by the particles 
neglected) for the particles 

where 

K(w, VIJ = 

i 

7 K,k,tty) 4,(wly) dy 011-c d 
= 

i K,(r,rlly) Z,(r,rly) dy 

.(12b) 

(V < tt,) 
1 

Z,(y) and K,(y) are modified Bessel functions of 
the first and second kind of nth order, respectively. 
The dimensionless parameters are 

g,=l+wPr 
9 

(13) 

Z-= 
cpP,,pu, 

(14) 

N, =-$ 
w 

(1% 

z. = KR (16) 

d ’ 
K=IL 2 nc 0 2 PP (17) 
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2n A R2 
M = Nu,---‘$--. (18) 

u. 
P 

The function g/ is a characteristic parameter in 
turbulent flow and reduces to unity in laminar 
flow. The boundary conditions, then, become 

v = 1; e, = ep = 1 

?#I =o; ae,/aq = aeplaij = 0 

i 

(19) 

5 = 0; f+ = 8, = 8,. 
Equations (10) and (11) constitute simultaneous 
nonlinear integrodifferential equations and it 
seems to be formidable to get the analytical 
solution by virtue of the high order nonlinearity. 
Therefore regarding equations (10) and (11) 
as the parabolic partial differential equation or 
its modified form, we calculate them numerically 
as the progressive type of problems by using the 
implicit finite difference method. In practical 
calculation, in order to achieve satisfactory 
accuracy near the wall, the comparatively small 
lattice spacing is used. 

Considering the lattices in the radial direction 
as illustrated in Fig. 3 and assuming the ith 
surface temperature to be known and the (i + 1)th 
surface temperature unknown, the derivatives 

Wall 

? 

t 

2 - 

O < 

?'=a 

i-2 i-l L I+1 lt2 

FIG. 3. Lattices of finite difference. 

in equations (10) and (11) can be expressed by 
the following finite difference approximations. 

e, (i + 1, .d - ef (i, j) ae, 

at - A5 

e,(i + 1, j) - e,(i,j) ael, 

at - A5 

aof 0, (i + 1, j + 1) - (&(i + 1, j - 1) 

all= &+&I 
F (20) 

a=e, _ O,(i+ l,j+ l)_ Q,(i+ 1,j) 

p- Atl(& + 4) Wrtr 

+ y&y ,1;. 
1 1 I 

The substitutions of equation (20) into equations 
(10) and (1 l), the approximation of integrals by 
trapezoidal formula and the replacement of 
Op(i + 1,j) in integral terms of radiative heat 
flux in equation (11) with Op(i, j) as the zero-th 
order approximation yield 

ujefti + ‘ii- %(iJ) + Mj{ef(i + l,j) 

- e,(i + LA} 

$(i+ l,j+ 1)-+(i+ l,j+ 1) 

AV + 4 

f+(i+ l,j+ 1) _ e,(i+ 1,j) 

WV 1 

+ j!yvy ii)) (21) 
1 1 

us e&i + Lj) - ep(i,i) 
J A< 

+ Mj{6,(i + 1,j) 

- t$ (i + 1, j)] = g H(z,qj) + 2 $ 
R R 
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2T2 
- $ e;t(i,j) (22) 

R 

where the prime denotes the differentiation with 
respect to q. 

The values of Q and qn+l are equal to zero 
and unity, respectively and the spacing Aql is 
equal to L\ll in equally spaced lattice range. 
Since equations (21) and (22) yield first order 
simultaneous equations of the 2n-dimensions 
[(I, (i + 1, j), t9t + 1, j); j = 1 N n] together with 
the same num er of unknowns at the arbitrarily 
(i + l)-th cross section, one can get solutions 
immediately. 

After obtaining 0,(i + 1, j), O,(i + 1, j), 
(j = 1 ‘y n),these values are again substituted into 
8 (i, j) (j =l -n) on the right hand side in equa- 
ti&r (22) as the 1st order approximation and 
then the similar computation is made repeatedly 
until the prescribed convergent condition for 
kth solutions 13”) 

ti;‘(i + 1,j) - O$-“(i + 1, j) < o m5 
e’,“)(i + l,n 

(23) 

is satisfied. Thereafter advancing 5 to the next 
step 5 + A<, and the similar iterative calculations 
are repeated. 

The ranges of dimensionless parameters 
covered here are as follows. 

r = 01~10~0) z0 = 0.0-3.0 

N, = OGOl- co, Re = 5 x 103w2 x 104. (24) 

3. DISCUSSION OF RESULTS 

3.1 Temperature profiles 
The typical results of the temperature profiles 

calculated here are illustrated in Figs. 48. The 
ordinate and the abscissa are normalized to be 
8 = [(e - e&/(1 - e,)] and y/R, respectively. 

Table 1 

J 

M = 8 X lo3 g,,Pr = 1,0, = @5. 

The values of parameters shown in each figure 
are listed in Table 1, in which the value 
M = 80009, corresponds to the case of Nu, = 29, 
and d, = 10~. The general trend on the tempera- 
ture profiles are as follows: 

(i) In the vicinity of the heated wall the tempera- 
ture gradient becomes steeper due to the 
presence of fine particles and as a result the 
convective heat transfer is promoted while 
in the central core of a pipe the gas tempera- 
ture is increased by the heat transfer from 
tine particles, which absorb thermal radia- 
tion. 

e 

FIG. 4. Temperature profiles vs y/R (effect of x/R). 
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FIG. 5(a). Temperature profiles vs y/R (effect of Re). FIG. 5(c). Temperature profiles vs y/R (effect of Re) 

0.2 0.4 0.6 0.6 

L 
R 

FIG. 5(b). Temperature profdes vs y/R (effect of Re). 

(ii) The temperature difference of the two phases 
cannot be found throughout the pipe radius 
by virtue of the fluid turbulence near the 
particles and this situation does not vary with 
axial distance x/R. 

Figures 4 and 5 show the variations of the 
temperature profiles with axial distance x/R and 
Reynolds number Re, respectively. 

The lower temperature rises with increasing 
Re are ascribed to the increment of the volu- 
metric flow rate, when same fluid is used. Since 
the fraction occupied by convective heat trans- 
fer in total heat-transfer rate reduces as the 
radiation contribution increases, it is rather 
favorable to employ laminar flow in the very- 
high temperature system but a certain device 
may be required to eliminate the temperature 
difference of the two phases. Additionally it 
appears that the radiative heat transfer is not so 
effected by the variations of Reynolds number 
and therefore it is almost independent of the 
flow field. 
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FIG. 6(a). Temperature profiles vs y/R (effect of N,). FIG. 6(c). Temperature profiles vs y/R (effect of NJ 

FIG. 6(b). Temperature profdes vs y/R (effect of NJ. 

I I I I 

0.2 0.4 0.6 0.8 

Y 
F 

Figures 6(a)-(c), which correspond to axial 
distance x/R = 1, 10, 40, respectively illustrate 
the effect of parameter NR on the temperature 
profiles. 

In the case of NR = 0901 in which radiative 
heat transfer is pronouncedly predominated, 
for laminar flow of gaseous suspension the 
considerably large temperature difference be- 
tween carrier fluid and dispersed particles 
yields [2] so that this is not favorable from the 
viewpoint of the effective heating of the gas. For 

turbulent flow, however, the temperature dif- 
ference between two phases is negligible due to 
the turbulence and this fact is favorable for the 
practical purpose. 

The careful examination on the numerical 
results shows that: 

(i) the temperature of the particles is higher in 
the central core while in the proximity of 
the wall it is lower than that of the gas and 
the intersection of both temperature pro- 
files moves toward the wall with decreasing 
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NR (larger radiation contribution) and 
increasing x/R. 

(ii) the temperature difference increases with 
decreasing NR and does not appreciably 
vary with x/R. 

(iii) the temperature gradient at the wall re- 
duces as the parameter N, decreases. 

These tendiencies are also found in laminar flow 

PI. 
Figures 7(a)-(c), which correspond to axial 

distance x/R = 1, IO, 40, respectively, illustrate 
the effect of the loading ratio r on the tempera- 
ture profiles. Here the variation of the loading 
ratio r under the fixed optical radius r0 can be 
achieved by either using the different size of 
particles or other kind of particle (different 
emissivity Q. The temperature difference de- 
creases with increasing r and in turbulent flow 
it is almost negligible over the range calculated 
here(r = O-l-10). 

For large r the development of the temperature 

0.2 0.4 0.6 0.6 I-O 

FIG. 7(a). Temperature profdes vs y/R (effect of r,). 

I. 

0. 

0. 

8 

0. 

0.: 

I I I I 

5 *IO,0 

\ 
F=lO.O 

T= I.0 
l-=04 b 

0.2 

I.0 I I I I 

FIG. 7(b). Temperature profiles vs y/R (effect of r] 

FIG. 7(c). Temperature profiles vs y/R (effect of r). 
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8 

0.4 

0.2 

C 

I I I I 

+ = I.0 

r,*3,0 
r. n 2.0 

2:1;.g 

ii!!- 
0.2 0.4 0.6 0.8 

K' 

I) 
I.0 
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0 

0.4 

0.2 

, 

C 

I.0 

FIG. 8(a). Temperature profiles vs y/R (effect of ~0). FIG. 8(c). Temperature profdes vs y/R (effect of r,,). 
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R 

FIG. 8(b). Temperature profdes vs y/R (effect of TJ. FIG. 8(d). Temperature profdes vs y/R (effect of TJ 
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field is decelerated due to the increased heat 
capacity of flowing suspensions and, in conse- 
quence, thermal entry lengths are considerably 
prolonged. The large r is, however, disadvan- 
tageous from the viewpoint of the effective heat- 
ing of the gas. It seems that the case of r = 10 
slightly digresses from the present analysis. 

Figures 8(a)-(d), which correspond to axial 
distance x/R = 1, 10, 20 and 40, respectively, 
illustrate the effect of the optical radius r0 on 
the temperature profiles. The radiative heat 
transfer characteristics of the particles are very 
excellent and the optical radius z0 can be varied 
with ease in a suspension flow system, as men- 
tioned before, so that it is of great importance 
to examine the effect of the optical radius z0 
on the temperature profiles. References to 
Fig. 8 reveal the fact that when r,, = 3 the 
temperature rises considerably near the wall as 
compared with those of smaller zc, while in 
central core it is rather lower than that of z0 = 2 
at inlet section, but exceeds it easily as the fluid 
flows down-stream, because the eddy diffusivity 
for heat in turbulent flow regime may probably 
play an important role along the radial direction. 
In laminar flow when the optical length of the 
flowing medium is deep from the heat surface 
the so-called radiation shield occurs, that is, 
the radiation energy cannot penetrate to the 
central core and in consequence, the excursion 
of temperature profile from parabolic becomes 
considerable due to lower transport ability for 
heat along radius direction without turbulence. 

When z0 = 05, the temperature rise is com- 
paratively small throughout the flow channel 
in spite of the large radiation contribution 
(NR = OOl), since radiation easily penetrates 
through the fluid without absorption. 

3.2 Heat transfer 
The total, convective and radiative heat 

fluxes at the wall and the local Nusselt numbers 
are defined by the following equations. 

qT = 4c + qJr (25) 

_ 8% R 

“k,T- =K ,,El 
(26) 

where 

~tl,WOWv, 

(27) 

f 

al 
J’(r,) = (28) 

1 

Nut+= q,- 

kf K - Tm) = N”&C + Nu&. f 
(29) 

(30) 

(31) 

The dimensionless cup-mixing mean tempera- 
ture of the gas, the particles and the two phases 
are 

= efm + rep 
1+r 

(34) 

respectively. Equations (30) and (31) can be then 
rewritten as follows 

/u - em). (36) 

The total Nusselt number Nu, T vs axial 
distance x/R is shown for various rebresentative 
parameters in Fig 9. The parameters of each 
curves in Figs. 9 and 10 are listed in Table 2. 
The qualitative tendency is analogous to that of 
the laminar flow. 
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x 

FIG. 9. Total Nusse.: number Nu,,, vs x/R. 

As being found from the reference to a chained 
line the Nusselt number of single gas by pure 
conduction is slightly lower than that obtained 
from the exact solution (not reproduced here), 
though the errors are tolerably small. This is 
due to the fact that the temperature gradient at 
the wall included in the convective Nusselt 
number is calculated by using the very small 
numerical values in finite difference approxima- 
tion. Since the error is considered as the limita- 
tion of the accuracy of finite difference method, 
the smaller lattice spacing is not ‘employed. 

The cup-mixing mean temperature, the tem- 
perature profiles and the convective Nusselt 
number are, however, expected to be substanti- 
ally correct and the satisfactory accuracy may be 
obtained when the radiative heat transfer pre- 
dominates over the convective heat transfer. 

The Nusselt number Nu, T decreases to a 
certain minimum and turns to increase beyond 

this point, which is a striking feature when the 
radiation effect is included and implies that the 
temperature field cannot be fully developed even 
in a downstream. In connection with the fact 
that the minimum of Nut T moves toward the 
inlet of a pipe as N, or r ‘decreases, the reason 

why Nut r takes a minimum can be also con- 
sidered that when the radiation effect is included 
the cup-mixing mean temperature 13~ of the 
two phases rapidly increases as compared with 
the reduction of the heat flux as the fluid flows 
downstream. The effect of parameters z0 and 
N, on Nut r is considerable and Nu, T in- 
creases with’ increasing r,, and decreasing N,. 
The effect of r is, however, small while that of 
Nut, c is appreciably large. 

The cup-mixing mean temperature tIm vs 
axial distance x/R is shown for various para- 
meters in Fig. 10. A chained line curve denotes 
the single gas flow at Re = 104. Here it must be 
noted that when r = 1 and 10 the heat capacities 
of flowing media are twice, and eleven times as 

0.6 

QJ 0.7 

0.6 

FIG. 10. Cup-mixing mean temperature of the two phases 
vs x/R. 

Table 2 

\ I 

PaiN I ’ 2 3 4 5 6 7 8 9 
\ 

Nx co 0.1 0.01 0401 
r 1.0 1.0 1.0 1.0 
5 - 1.0 1.0 1.0 
Re lo4 lo4 104 104 

M = 8 x lo4 g,, or = 1, eO = @5. 
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large as that of single gaseous phase flow, re- 
spectively. Therefore, in spite of the large con- 
tribution of radiation, the temperature of r = 10 
is lower than that of single gaseous phase flow. 

Finally the calculation is performed with the 
parameters of eddy diffusivity for heat in particu- 
late phase to that in fluid phase, err, JsH, J to be 
equal 0*2/0.8 and the result shows that the heat 
transfer characteristic is almost unchanged. 

4. CONCLUSIONS 

Combined radiation and turbulent forced con- 
vective heat transfer by gaseous suspensions of 
tine particles is examined and the effects of 
various parameters on the temperature profiles 
and the heat-transfer characteristics are dis- 
cussed in some detail. The important conclu- 
sions obtained here are as follows : 

(1) 

(2) 

(31 

The heat-transfer characteristics can be 
remarkably improved by flowing suspen- 
sions; that is, the temperature gradient be- 
comes steeper due to the presence of parti- 
cles in the vicinity of the wall, while in the 
central core of a pipe the gas temperature is 
elevated by the heat transfer from the fine 
particles which absorb radiation, 
When the radiation effect is included, there 
exists no fully developed temperature profile 
even in a downstream; that is the Nusselt 
number decreases to a certain minimum and 
thereafter tends to increase with axial 
distance x/R. Additionally the temperature 
profile deviates from that by pure conduc- 
tion. These behaviors are considered to be 
connected with each other. 
In a suspension flow system many applica- 
tions are considered in its use, so that it 
should be necessary to examine the heat- 
transfer mechanism by taking account not 
only of the heat-transfer characteristics 
but also of the cup-mixing mean tempera- 
ture. 

The three results above also hold for 
laminar flow [l, 21. 

(41 

(5) 

(6) 

The radiative heat transfer does not appre- 
ciably change with Reynolds number and 
therefore is independent of the flow field. 
Since, at very high temperature, the fraction 
occupied by convective heat transfer in 
total heat-transfer rate is small as compared 
with that occupied by radiative heat transfer, 
it is rather favorable to employ laminar flow 
from the viewpoint of pumping power for 
circulation. 
In turbulent flow, the temperatures of the 
two phases are indistinguishable, so that it 
seems possible to perform the analysis under 
the condition of Tf N T . 
In contrast to the lami& flow the radiation 
shield for comparatively large optical radius 
is not appeared which might be attributed to 
the eddy diffusivity in turbulent flow. 

The numerical computation in this paper has 
been performed at the Computer Center, Kyushu 
University by FACOM 230-60. 
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RAYONNEMENT THERMIQUE PAR UN MILIEU MULTIPHASIQUE EN ECOULEMENT- 
III. ANALYSE DU TRANSFERT THERMIQUE D’UN ECOULEMENT TURBULENT DANS UN 

TUBE CIRCULAIRE 

RQumLLe transfert thermique par l’tcoulement laminaire d’une suspension gazeuse de tines particules 
solides et (ou) liquides, a et& trait& dans les articles precedents par les auteurs, quand le rayonnement 
thermique predomine sur les autres modes de transfert. Dans la presente etude, on a conduit une analyse 
de l’tcoulement turbulent d’un milieu multiphasique dans un tube circulaire a temperature parietale 
constante, l’un des problemes pratiques les plus importants. 

Cependant l’bcoulement turbulent de la suspension gazeuse est compliqut par les comportements 
turbulents des particules dispersees et du fluide porteur. En consequence le modble considtre a 6te employ& 
en tenant compte non seulement du transfert thermique par rayonnement a la phase dispersee mais du 
transfert thermique, entre les particules et le fluide envirohnant, associe a la turbulence. Les equations 
reduites fondamentales constituent des equations inttgro-differentielles simultanees qui sont numtrique- 
ment resolues par la mtthode implicite aux differences linies avec un processus ittratif des termes de 
rayonnement. Les rcsultats calculb sur les proflls de temperature et le transfert thermique sont ensuite 

examines en detail. 

WARMETRANSPORT DURCH STRAHLUNG IN EINEM FLIESSENDEN VIELPHASIGEN 
MEDIUM 

TEIL III: EINE UNTERSUCHUNG DES WARMETRANSPORTES BE1 TURBULENTER 
STROMUNG IN EINEM KREISFGRMIGEN ROHR 

Zuaanuuenfasawng--In den vorangegangenen Arbeiten wurde der Wiirmetransport bei laminarer Striimung 
einer gasfdrmigen Suspension fest und/oder fltissiger kleiner Teilchen ftir den Fall behandelt, dass die 
thermische Strahlung die anderen Arten des Wlirmetransportes iiberwiegt. In dieser Arbeit wird eine 
Untersuchung der turbulenten Striimung des Vielphasenmediums in einem kreisfdrmigen Rohr mit 
konstanter Wandtemperatur durchgeftihrt. Dies ist ftir die Praxis eines der wichtigsten Probleme. Bei 
der turbulenten Striimung einer gasfdrmigen Suspension ist jedoch die Verbindung des turbulenten 
Verhaltens der dispergierten Teilchen und des Tragerfluids kompliziert. Daher wurde das Modell so 
angewandt, dass nicht nur der WBrmetibergang durch Strahhrng auf die jeweilige Phase bertlcksichtigt 
wurde, sondem such der turbulente WBrmetibergang zwischen den Teilchen und der umgebenden 
Fltlssigkeit. Die reduzierten Basisgleichungen bilden simultane Integraldifferentialgleichungen, die 
numerisch durch die implizite Methode der endlichen Differenzen gel&t wurden, mit Iteration der 
Strahlungsterme. Die berechneten Ergebnisse fti die Temperaturprotile und den WHrmeiibergang 

werden noch im Detail geprtift. 

JIY’IHCTbIH TEHJIOOBMEH HPH TE=IEHHB MHOFO@A3HOm CPEAM. 
3. AHAJIH3 TEI-IJIOOBMEHA HPH JIAMHHAPHOM TE=IEHHH B 

HPYI’JIOH TPYBE 

AHtioTaqw~-Hepeuoc Tenna npu JIaMIlIiaprioM Te=reHriri raaOB8BeCefi TBepabIx EI/IIJIU 

?KH~KHXMeJIKKX=faCTHlJOnHCaH B paHee OIly6JIHKOBaHHblXaBTOpaMIl pa6oTaxnOTennOBOMy 
uanyreuuro, npeaannpyromery rian BceMn xpyrrim~ mixaMu neperioca Tenna. B xarixoi 
pa6oTe paCCMaTpHBaeTCH Typ6yneHTHOe TeqeHBe MHOrO@a8HOi CpeAbI B KpyrJIOii Tpy6e IIpH 

nOCTORHH0i-i TeMllepaType CTeHKII, 9TO RBJIReTCR OqeHb BamHOi npaKTWfeCKOfi 8aAaqefi. 

ORHaKo TypByneHTHoe TeqeHKe raaosaseceti ycnomaseTcK B cBnaK c paanKsHbm noBeaeHuenf 

AkicnepcHblx sacTKq H cpenhl. B COOTBeTCTBHM C BTIlM KCnOJlbE3yeTCFl ygo6Hafi MOAeJfb, 

ywTbmamqafi He TonbKo nywcTbIB nepeHoc Tema K AmnepcHoi @aae, ~0 II TennOO6MeH 

MemAy qaCTHIJaMIl II OHpymaIOII(elt ?-KKAKOCTbIO, CBHZ3aHHbIfl C Typ6yJIeIiTHOCTbIO. UpHBe- 

AeHHbIe OCHOBHbIe ypaBHeHliR HBJfJ3IOTCR CKCTeMOti HHTerpO-~H+#epeHIJKaJIbHbIXypaBHeHEIZt, 

KOTOpbIe peILlaIoTCR 9EICJIeHHO C IIOMOWbH) HeRBHbIX KOHeqHO-paElHOCTHblX CXeM MeTOROM 

ATepaqm weHoB, ywTbIBam~Kx KanyqeHKe. npoBeneH AeTanbHbIB ananna paccqs¶Tarirrbtx 
pacnpe~enerruti TeMnepaTypbr u TennooBnerra. 


