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Abstract—The heat transfer by gaseous suspension laminar flow of solid and/or liquid fine particles has
been elucidated in the preceding papers by the authors when the thermal radiation predominates over other
modes of heat transfer. In the present study an analysis is performed on the turbulent flow of the multiphase
medium in a circular tube with constant wall temperature which is one of the most important problems in
practice. The turbulent flow of gaseous suspension is, however, complicated in connection with the turbu-
lent behaviors of the dispersed particles and the carrier fluid. Accordingly the tractable model has been
employed by taking account of not only the radiative heat transfer to the particulate phase but the heat
transfer between particles and surrounding fluid associated with turbulence. The reduced basic equations
constitute simultaneous integro-differential equations which are solved numerically by the implicit finite
difference method with iterative procedure of the radiative terms. Thereafter the calculated results on the
temperature profiles and the heat transfer are examined in details.

NOMENCLATURE Nu,, Nusselt number on heat transfer

A, surface area of single particle = nd2 between particle and surrounding
B, black body radiation = (6/n)T*; gas defined by equation (1);
CrsCp specific heats of gas and particles; Nu, ;,  total local Nusselt number defined
d, particle diameter; by equation (29);
f fanning friction factor; Nu, .,  local Nusselt number by convection
F(z,), integral defined by equation (28); defined by equation (30);
gy total diffusivity function for gas; Nu, o,  local Nusselt number by radiation
H(z,n), integral defined by equation (12); defined by equation (31);
h, local heat transfer coefficient; n, number of particles per unit volume;
h, heat transfer coefficient between Pr, Prandtl number = pc /k,;

particle and gas; acs convective heat ﬂux defmed by
Jo» radiation intensity from the wall equation (26);

= (o/m)T%; dp radiative heat flux defined by equa-

K(tyn, 7,n,), integrals defined by equation tion (27);

(12); a7 total heat flux defined by equation
kg, thermal conductivity of gas; (25);
M, dimensionless parameter defined r, radial coordinate;

by equation (18); rt, dimensionless radial coordinate;
Ng, radiation—conduction interaction R, pipe radius;

parameter defined by equation (15); Re, Reynolds number = 2u, R/v

S, distance defined by equation (5);

* Presently, Shin Nippon Iron and Steel Manufacturing

Co.

T, T, temperatures of gas and particle;
T, cup-mixing mean temperature of
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flowing gaseous suspensions;

inlet temperature;

wall temperature;

axial velocities of gas and particles;
dimensionless axial velocity;
dimensionless axial velocity = u/u,_;
volume of a particle = (/6)d>;
axial coordinate;

dimensionless coordinate.

Greek symbols

thermal loading ratio defined by
equation (14);

surface emissivity of particle;

eddy diffusivities for heat in gaseous
and particulate phase;

eddy diffusivity for momentum;
dimensionless radial coordinate =
r/R;

lattice spacing in the radial direc-
tion;

dimensionless temperatures of gas
and particles;

dimensionless cup-mixing mean
temperature of flowing gaseous
suspensions defined by equation
(34);

dimensionless temperatures of gas
particles, defined by equations (32)
and (33);

dimensionless inlet temperature;
normalized dimensionless tempera-
ture = (6 — 6,)/(1 — 6,);
azimuthal angle shown in Fig, 2;
absorption coefficient of dispersed
particles defined by equation (7);
viscosity of gas;

kinematic viscosity of gas;
dimensionless axial coordinate =
(x/R)/RePr;

lattice spacing in the axial direction;
apparent density of dispersed par-
ticles;

densities of gas and particle
material ;

Stefan—Boltzmann constant;

1, optical distance;

To» optical radius.
Suffixes

C, convection;

dp, dispersed phase;

f gas (fluid);

m, mean value;

0, inlet;

p, particle;

R, radiation;

T, total;

w, wall;

1, dummy variable;

&, local.

1. INTRODUCTION

THE HEAT transfer by flowing suspensions has
the following prominent characteristics [ 1, 2]:

(i) Flowing suspensions can fit for the operation
at very high heat flux, due to the increased
volumetric heat capacity of the medium.

(ii) At very high temperature, the radiative heat
transfer can be improved as compared with gas
alone because of the large absorptivity of the
cloud of fine particles.

(iii) The improvement in the convective heat
transfer with flowing suspensions over that with
a pure gas can be expected due to the reduction
of viscous sublayer thickness by the turbulence
created by the random motion of particles in
case of turbulent flow and so forth.

In the preceding studies the numerical analyses
have been performed on the heat transfer with
fully developed laminar flow of a suspension of
fine particles between parallel plates [1] and in
a circular tube [2].

In consequence, it is clarified that flowing
gaseous suspensions are applicable to the heat
transfer in high heat flux and high temperature
systems and have the wide applications in
industry, due to the basic nature discussed above.

The present analysis is concerned with the
turbulent flow in a circular tube and it is, how-
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ever, inevitable to exclude the detailed discus-
sion on the turbulent behaviour of multiphase
flow because of the veiled situation of the mecha-
nism of multiphase turbulence. Hence, both
physically and intuitively reasonable model is
set up by taking account of the ‘particulate
character’ of dispersed phase relating to the
conductive, convective and radiative heat trans-
fer.

2. ANALYSIS

2.1 Description of the problem
The coordinate system of the flow field is
shown in Fig, 1. The mechanism of turbulence in

r

.

FiG. 1. Cylindrical coordinate system.

flowing gaseous suspensions of fine particles is
so complicated that no information on the eddy
diffusivities for the heat or momentum of the
particles and the gas, either experimentally or
analytically, is available so far. In the present
analysis, therefore, it is assumed as done by
Tien et al. [3] that the eddy diffusivity of the
particles are equal to zero (that is, &, , = 0) and
the presence of particles has a negligible effect
on the eddy diffusivity of the gas. It is readily
seen that this is a close approximation to the
actual system when the particles are very small
and the loading ratio is less than or equal to
unity.

The Nusselt number on the heat transfer
between the particle and the gas, Nu, in equation
(18), may be a function of the radial position r,
due to the flow being turbulent near the particles,
so that the Nusselt number Nu, is assumed in the
following form
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hd
Nud=_tz=2.gf. (1)

This relationship has no theoretical or experi-
mental ground except that this seems to be
physically and intuitively acceptable. Here,
gy =1+ (&g /v, )Pr and the value of Nu, = 2
corresponds to the case by pure conduction in
the viscous sublayer in which the turbulent
fluctuations vanish.

In addition to the subjects discussed above the
following assumptions are introduced into the
analysis

() The pipe wall is isothermal (T,, = constant)

and black for thermal radiation.

The flow field of the two phases is hydro-

dynamically fully developed from the inlet

and has a turbulent velocity distribution.

The temperatures of the particles and the

gas are the same at the inlet.

The pysical properties (such as p, ¢, u, k,

etc.) are constant.

The particles are spheres of uniform size

and thermal conductivity of which is large

enough to neglect radial variation of tem-
perature within the sphere.

(v) The particles are uniformly distributed

throughout the pipe cross section, and

emit and absorb thermal radiation as a

gray fluid in local thermodynamic equi-

librium, but do not scatter.* The gas is
transparent for radiation.

The particles are sufficiently small and

numerous to be considered as a continuum

for thermal radiation.

(vil) The time-mean velocities of the two
phases are equal and the presence of the
particles has no effect on the velocity
profile and the friction factor of the gas.

(viii) The agglomeration, chemical reaction of
the particles and viscous dissipation are
not considered.

(i)

(iii)
(iv)

(vi)

* When the radiating medium is enclosed by solid sur-
face(s) the isotropic scattering does not influence the radi-
ative heat transfer, though the optical thickness of the
medium is increased [4].
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(ix) The energy transports by collisions among
particles or with the wall are negligible as
compared with those by conduction and
radiation.

2.2 The basic equations and their numerical
solution
On the foregoing postulation mentioned
above, a heat balance in pipe flow yields the basic
equations governing the temperature field. For
the gas

an+nhA(T T)

CrPrly dx L 4
_and [k, VI,
r or {r(cfpf T o @)

and for the particles

6T
CrPap¥y dx e nphpAp(T )

c 0 6T
=_fa{ ey Pap o } div gp. 3

The apparent density of the dispersed particles
is assumed constant everywhere and p,,
fated to the density p, with the followmg
equation

pdp = ppanp‘ (4)

The first term in both equation (2) and equation
(3) describes heat convected along the pipe;
the second term is the heat transfer rate between
the phases (an identical term in both equations)
whilst the first term on the right hand side of the
equations is the heat transferred radially due to
eddy diffusion. For the gas, molecular conduc-
tion is assumed to contribute additively to radial
heat transfer whereas there is considered to be
no similar term for the particles.

Let us consider the geometrical configuration
for the radiative heat flux in Fig. 2 where an
arbitrary point is denoted by (x, r) and a dummy
variable point by (x,, r;, ¢). The distance S is
then given by

S={(x, —x*+r*+ri—2rr cosp}* (5
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FiG. 2. Geometrical configuration for radiative heat flux.

and S denotes the value of S whenr, = R.

Assuming the fluid to be in thermodynamic
equilibrium and not to scatter, the divergence of
the radiative heat flux vector [5]

+ 0w 2n
—divg, = xJ J j‘ RR — ryexp{—1t(S,)}

- 0

d R + o0 21

d
¢S3x1 + K fBrl J fexp {—uS)}
0 - 0
%d—s';— 4nkB  (6)

where J_ is the intensity of the wall, B is the
blackbody radiation and 1t(s) is the optical
distance defined by

(s) = IK(S )ds,

The absorption coefficient x is given by the
projected cross section of particles normal to the
radiative flux

2
K = n<%ﬂ> ne,. )

In deriving equation (6), the approximation of
the one dimensional radiative heat flux is
employed, based on the assumption that the
radiative transfer in the axial direction is
neglected as compared with the radial radiative
heat transfer, i.c.

o0ge, 10
Ox < 7 or (rqg.)-




RADIATIVE HEAT TRANSFER BY FLOWING MULTIPHASE MEDIUM

For the velocity distributions of the two
phases, the expression developed by
Reichardt [6] are used, that is for viscous sub-
layer, y* < 5

ut = y+,i"’—’—’— ~0 (8a)
Vr
for transition layer, 5 < y* < 30
+ e 3 oy s Y l_y_+._1
= 305+501ny,vf 5( R
(8b)
for turbulent core, y* > 30
1:5(1 + r/R)
+ _ &, . +_ TN i
=55+ 251n[y o 2(r/R)2:|’
By _O4RTL (T ry?
v == 1 R 1+2 R (8¢c)
where
= (/u,)/\/(f12), y* = (y/RXRe/2)\/(f/2),
y+ =Rt —r*
and the eddy diffusivity for heat ¢  is calcu-

lated by use of the velocity distribution on the
assumption that ey .~ ¢, .. For brevity the
boundary conditions are taken as follows

r=0; 0T,/or = 0T Jor =0  (9)
x=0 T,=T,=T,

Strictly speaking, however, the temperature
discontinuity between the heated wall and the
particles at the wall has to be included in the
boundary condition, due to the absence of the
conduction term in equation (3). The results
obtained with conditions of equation (9) under-
estimate the temperature gradient at the wall as
compared with those obtained with the so-called
“Radiation Slip” [7] condition, so that the heat-
transfer characteristics are also underestimated.
This effect is, however, expected to be small,
because when the solid particles is travelling in
the immediate neighborhood of the wall before
hitting it, the temperature of the particles due
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to the local condition is very close to that of
the wall.

After transforming equation (6) according to
the method of Heaslet and Warming [8] and
transforming equations (2) and (3) into dimen-
sionless forms with the assumption that
U, = U, = U, it was found after some manipu-
lation,
for the gas

06, 20( 06
U—- FE + M@, -06)= nan(gf"5—n> (10

and (when radial heat transfer by the particles
neglected) for the particles

3
Ur%% + M@, - 6,) = 2—°H( ) + =2 270
R

1

22
JK(ton, Tonl)"]_e: d'h - N_OG; (11)
3 R
where

w d
.m%m=jxx%wuuww§f (12a)
1
K(Toﬂ, Toﬂl) =
]fKo(ToﬂY) Iz ndy  (n,<n)
S (12b)
{ Ko tgndy  @m<n,)

I.(y) and K (y) are modified Bessel functions of
the first and second kind of nth order, respectively.
The dimensionless parameters are

—1+4+%8Lp 13
9 1+ v r (13)
r = SParlom (14)

CrPr¥sm

ka
Ne= 273 (15
7, = kR (16)
d 2

K= n<—22> n,e, a7
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2n A R?
M =Nud—nL”—‘.

d

p

(18)

The function g, is a characteristic parameter in
turbulent flow and reduces to unity in laminar
flow. The boundary conditions, then, become

n=1; 0f=0p=1
n=0; 06, /on = a0 jon = 0 (19)
£E=0; 9f=6p=90.

Equations (10) and (11) constitute simultaneous
nonlinear integrodifferential equations and it
seems to be formidable to get the analytical
solution by virtue of the high order nonlinearity.
Therefore regarding equations (10) and (11)
as the parabolic partial differential equation or
its modified form, we calculate them numerically
as the progressive type of problems by using the
implicit finite difference method. In practical
calculation, in order to achieve satisfactory
accuracy near the wall, the comparatively small
lattice spacing is used.

Considering the lattices in the radial direction
as illustrated in Fig. 3 and assuming the ith
surface temperature to beknownand the (i + 1)th
surface temperature unknown, the derivatives

n=| Wall
n+) 7
n_n| - ) Y
Ar]I
: | | : : | © Unknown
! ' ! | o Known
J+2 - -
S+l *
An
J -
Jj-t - -
|
| I | | I
: | | ! | |
| | : | ! |
3 -
n 2 -- -
b Com
o N0 LS
€ /-2 i-t [ [+ (¥2

F1G. 3. Lattices of finite difference.
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in equations (10) and (11) can be expressed by
the following finite difference approximations.

6, 8,0+ 1,j) = 6,(i))

oc A

o¢ A
6_0!—=0f(i+1,j+1)—0f(i+1,j“1) . 20
on An + An,

% O(+1Lj+1) 6(+1))

on*  An(An+An,)  AnAn,
Ol+1j-1)
A’11(A'l + A'71)

The substitutions of equation (20) into equations
(10) and (11), the approximation of integrals by
trapezoidal formula and the replacement of
(i +1,)) in integral terms of radiative heat
flux in equation (11) with 6,(i,j) as the zero-th
order approximation yield

U, AZ +M{6,(+ L))
gNO G+ 1Lj+ ) =0+ 1,j+1)
=2(g +
G’n) An + An,
{9,(i+ Li+1) 6G+1L)
ilAn(An + An))  AnAn,
s (2])
An,(An + An,)
0 Gi+1,5)—6(,j . .
ur o AJf) o)) M6+ 1,)
: 2T 2t Ay
- 0] 0+ 1,])} = ]—V—;H(‘L’oﬂj) + -JV_RT

x {K(toh,» Tof 0,8, (0 1)
+ K(tg1, ToM,,) 050, m)

m—1
+ 2k2_2 K(zon, tonn 056 k)}
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2v5 Any
Ng 2

+ K(Toﬂj, Tolln+ 1) L/ 10:(1., n+ 1)

{K(@o)> ToM) 05> m)

+ 2k=)r:l+ ) K(toh 1o 1,050, k)}
2t .
- N—RB;(I,J) (22)

where the prime denotes the differentiation with
respectton.

The values of n, and 7, , are equal to zero
and unity, respectively and the spacing Az, is
equal to An in equally spaced lattice range.
Since equations (21) and (22) yield first order
simultaneous equations of the 2n-dimensions
[6:Gi + 1,j), 6.G + 1,j); j =1~n]together with
the same numﬁer of unknowns at the arbitrarily
(i + 1)-th cross section, one can get solutions
immediately.

After obtaining 6,(i + 1,j), 0,G+ L)),
(j =1 ~n),these values are again substituted into
6,(i,j) G =1~n)on the right hand side in equa-
tion (22) as the 1st order approximation and
then the similar computation is made repeatedly
until the prescribed convergent condition for
kth solutions 6%

69 + 1) — 6% + 1,))
0% + 1,))

is satisfied. Thereafter advancing & to the next
step& + A¢,and the similar iterative calculations
are repeated.

The ranges of dimensionless parameters
covered here are as follows.
r =01~100, 1, =00~30
Np =0001~0, Re=5x10*~2 x 10* (24)

< 00005 23)

3. DISCUSSION OF RESULTS
3.1 Temperature profiles
The typical results of the temperature profiles
calculated here are illustrated in Figs. 4-8. The
ordinate and the abscissa are normalized to be
e =[(6 - 0,)/(1 —6,)] and y/R, respectively.
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Table 1
;Nig. 4 5 6 7 8
N, 001 001 — 001 001
r 10 10 10 — 10
7, 10 10 10 10 —
Re 104 — 10 10* 10*

M =8 x 103gf,Pr= 1,8, =03.

The values of parameters shown in each figure
are listed in Table 1, in which the value
M = 8000g;, corresponds to the case of Nu,=2g,
andd, = 10u. The general trend on the tempera-
ture profiles are as follows:

(i) In the vicinity of the heated wall the tempera-
ture gradient becomes steeper due to the
presence of fine particles and as a result the
convective heat transfer is promoted while
in the central core of a pipe the gas tempera-
ture is increased by the heat transfer from
fine particles, which absorb thermal radia-
tion.

06

04

FiG. 4. Temperature profiles vs y/R (effect of x/R).
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F1G. 5(a). Temperature profiles vs y/R (effect of Re).
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4
F1G. 5(b). Temperature profiles vs y/R (effect of Re).

o] 02 o4 0-6 0-8 10

l4
F1G. 5(c). Temperature profiles vs y/R (effect of Re).

(ii) The temperature difference of the two phases
cannot be found throughout the pipe radius
by virtue of the fluid turbulence near the
particles and this situation does not vary with
axial distance x/R.

Figures 4 and 5 show the variations of the
temperature profiles with axial distance x/R and
Reynolds number Re, respectively.

The lower temperature rises with increasing
Re are ascribed to the increment of the volu-
metric flow rate, when same fluid is used. Since
the fraction occupied by convective heat trans-
fer in total heat-transfer rate reduces as the
radiation contribution increases, it is rather
favorable to employ laminar flow in the very-
high temperature system but a certain device
may be required to eliminate the temperature
difference of the two phases. Additionally it
appears that the radiative heat transfer is not so
effected by the variations of Reynolds number
and therefore it is almost independent of the
flow field.
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F1G. 6(a). Temperature profiles vs y/R (effect of N).

F1G. 6(b). Temperature profiles vs y/R (effect of N).

o 02 04 [eX3] o8 I

I
F16. 6(c). Temperature profiles vs y/R (effect of Np).

Figures 6(a){(c), which correspond to axial
distance x/R = 1, 10, 40, respectively illustrate
the effect of parameter N, on the temperature
profiles.

In the case of Ny = 0:001 in which radiative
heat transfer is pronouncedly predominated,
for laminar flow of gaseous suspension the
considerably large temperature difference be-
tween carrier fluid and dispersed particles
yields [2] so that this is not favorable from the
viewpoint of the effective heating of the gas. For
turbulent flow, however, the temperature dif-
ference between two phases is negligible due to
the turbulence and this fact is favorable for the
practical purpose.

The careful examination on the numerical
results shows that:

(i) the temperature of the particles is higher in
the central core while in the proximity of
the wall it is lower than that of the gas and
the intersection of both temperature pro-
files moves toward the wall with decreasing
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NR (lqrger radiation contribution) and ro . I
increasing x/R.
(ii) the temperature difference increases with L .00
®

decreas}ng N, and does not appreciably
vary with x/R.

(iii) the temperature gradient at the wall re-
duces as the parameter N, decreases.

These tendiencies are also found in laminar flow
[2].

Figures 7(a)-{c), which correspond to axial
distance x/R = 1, 10, 40, respectively, illustrate
the effect of the loading ratio I' on the tempera-
ture profiles. Here the variation of the loading
ratio I" under the fixed optical radius 7, can be
achieved by either using the different size of
particles or other kind of particle (different
emissivity ¢ ). The temperature difference de-
creases with increasing I" and in turbulent flow
it is almost negligible over the range calculated
here (I' = 0-1-10).

For large I' the development of the temperature

osh T

o6 r— —

FIG. 7(a). Temperature profiles vs y/R (effect of I'p). F1G. 7(c). Temperature profiles vs y/R (effect of I').
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F1G. 8(a). Temperature profiles vs y/R (effect of 1,). F1G. 8(c). Temperature profiles vs y/R (effect of 7).

o 02 04 06 08 ] .I 6&
y Y
R 3

F1G. 8(b). Temperature profiles vs y/R (effect of 7,). FiG. 8(d). Temperature profiles vs y/R (effect of 7,)
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field is decelerated due to the increased heat
capacity of flowing suspensions and, in conse-
quence, thermal entry lengths are considerably
prolonged. The large I' is, however, disadvan-
tageous from the viewpoint of the effective heat-
ing of the gas. It seems that the case of I' = 10
slightly digresses from the present analysis.

Figures 8(a){(d), which correspond to axial
distance x/R = 1, 10, 20 and 40, respectively,
illustrate the effect of the optical radius 7, on
the temperature profiles. The radiative heat
transfer characteristics of the particles are very
excellent and the optical radius 7, can be varied
with ease in a suspension flow system, as men-
tioned before, so that it is of great importance
to examine the effect of the optical radius t,
on the temperature profiles. References to
Fig. 8 reveal the fact that when 7, =3 the
temperature rises considerably near the wall as
compared with those of smaller 7, while in
central core it is rather lower than that of 7, = 2
at inlet section, but exceeds it easily as the fluid
flows down-stream, because the eddy diffusivity
for heat in turbulent flow regime may probably
play an important role along the radial direction.
In laminar flow when the optical length of the
flowing medium is deep from the heat surface
the so-called radiation shield occurs, that is,
the radiation energy cannot penetrate to the
central core and, in consequence, the excursion
of temperature profile from parabolic becomes
considerable due to lower transport ability for
heat along radius direction without turbulence.

When 1, = 05, the temperature rise is com-
paratively small throughout the flow channel
in spite of the large radiation contribution
(Ng = 001), since radiation easily penetrates
through the fluid without absorption.

3.2 Heat transfer

The total, convective and radiative heat
fluxes at the wall and the local Nusselt numbers
are defined by the following equations.

4r = 4qc + 4g (25
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R 0

q = (26)
Ckf T, on|,-,
R L5 3 (!
q ——=—F(r)——°J @n, H(zyn,)dy
kaTw NR 0 NR o pilt 01 (217)
where
F(To) = Kl(‘toy) Il(Toy)_y'i (28)
1
h2R q; 2R
Nu, . =4"" = T = Nu, .+ Nu
¢T kf kf(Tw -T) &C &R
(29)
_ q. 2R
Nu»f,C - kf(Tw — Tm) (30)
_ gz 2R
Nu.,’,,R = ——kf(Tw — Tm). (31)

The dimensionless cup-mixing mean tempera-
ture of the gas, the particles and the two phases
are

0 = 5 UG mdn/fy Undn (32)
0,m = §5 UOn dn/fs Undy (33)
1 1
0, = f U, + I'6)dn/(1 + I J Undny
0 0
6, +1I6
= fm pm
14T G4

respectively. Equations (30) and (31) can be then
rewritten as follows

06,
Nuye =251 "=1/(1 ~6,) (35)

{Tg ‘cg T
Nu, , =2 —F(t)————j BnH(tn)dn}
&R NR [ NR o p'l1 o't 1

/1 -8,). (36)

The total Nusselt number Nu,, vs axial
distance x/R is shown for various representative
parameters in Fig. 9. The parameters of each
curves in Figs. 9 and 10 are listed in Table 2.
The qualitative tendency is analogous to that of
the laminar flow.
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Nuer

10 ]
2xi0° 4

I
3 2

|
| L

FiG. 9. Total Nusselt number Nu,,, vs x/R.

As being found from the reference to a chained
line the Nusselt number of single gas by pure
conduction is slightly lower than that obtained
from the exact solution (not reproduced here),
though the errors are tolerably small. This is
due to the fact that the temperature gradient at
the wall included in the convective Nusselt
number is calculated by using the very small
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this point, which is a striking feature when the
radiation effect is included and implies that the
temperature field cannot be fully developed even
in a downstream. In connection with the fact
that the minimum of Nu, . moves toward the
inlet of a pipe as Ny or I’ decreases, the reason
why Nu, ; takes a minimum can be also con-
sidered that when the radiation effect is included
the cup-mixing mean temperature 6, of the
two phases rapidly increases as compared with
the reduction of the heat flux as the fluid flows
downstream. The effect of parameters 7, and
Ng on Nu, . is considerable and Nu, , in-
creases with increasing 7, and decreasing N,.
The effect of I' is, however, small while that of
Nu, . is appreciably large.

The cup-mixing mean temperature 6, v
axial distance x/R is shown for various para-
meters in Fig. 10. A chained line curve denotes
the single gas flow at Re = 10*. Here it must be
noted that when I' = 1 and 10 the heat capacities
of flowing media are twice, and eleven times as

. . e . +o
numerical values in finite difference approxima- ot 's
tion. Since the error is considered as the limita- oob -
tion of the accuracy of finite difference method, - Single gas (e=Id)
the smaller lattice spacing is not employed. 08— /

The cup-mixing mean temperature, the tem- ¢ [ A I/

X D g7l

perature profiles and the convective Nusselt | o iy 7,

. 1
number are, however, expected to be substanti- 06— /-/ —
ally correct and the satisfactory accuracy may be L -
obtained when the radiative heat transfer pre- 05 I T L L
dominates over the convective heat transfer. X

he N It number Nu, . decreases to a ”
T e l_ls,se ST FIG. 10. Cup-mixing mean temperature of the two phases
certain minimum and turns to increase beyond vs x/R.

Table 2

No 1 2 3 4 5 6 7 8 9 10 11
N, © 01 001 0001 001 001 001 001 001 001 0-01
r 10 10 10 1-0 10 10 1-0 o1 100 10 1-0
7, — 1-0 10 10 05 20 30 1-0 10 1-0 10
Re 10* 10* t0* 10 10* 10* 10* 10* 10* 5%10° 2x10*

M=8x10*g, Pr=10,=05.
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large as that of single gaseous phase flow, re-
spectively. Therefore, in spite of the large con-
tribution of radiation, the temperature of I' = 10
is lower than that of single gaseous phase flow.
Finally the calculation is performed with the
parameters of eddy diffusivity for heat in particu-
late phase to that in fluid phase, ¢, /ey , to be
equal 0-2/0-8 and the result shows that the heat
transfer characteristic is almost unchanged.

4. CONCLUSIONS

Combined radiation and turbulent forced con-
vective heat transfer by gaseous suspensions of
fine particles is examined and the effects of
various parameters on the temperature profiles
and the heat-transfer characteristics are dis-
cussed in some detail. The important conclu-
sions obtained here are as follows:

(1) The heat-transfer characteristics can be
remarkably improved by flowing suspen-
sions; that is, the temperature gradient be-
comes steeper due to the presence of parti-
cles in the vicinity of the wall, while in the
central core of a pipe the gas temperature is
elevated by the heat transfer from the fine
particles which absorb radiation.

(2) When the radiation effect is included, there
exists no fully developed temperature profile
even in a downstream; that is the Nusselt
number decreases to a certain minimum and
thereafter tends to increase with axial
distance x/R. Additionally the temperature
profile deviates from that by pure conduc-
tion. These behaviors are considered to be
connected with each other.

(3) In a suspension flow system many applica-
tions are considered in its use, so that it
should be necessary to examine the heat-
transfer mechanism by taking account not
only of the heat-transfer characteristics
but also of the cup-mixing mean tempera-
ture.

The three results above also hold for
laminar flow [1, 2].

H. TAMEHIRO. R. ECHIGO and S. HASEGAWA

{4) The radiative heat transfer does not appre-
ciably change with Reynolds number and
therefore is independent of the flow field.
Since, at very high temperature, the fraction
occupied by convective heat transfer in
total heat-transfer rate is small as compared
with that occupied by radiative heat transfer, -
it is rather favorable to employ laminar flow
from the viewpoint of pumping power for
circulation.

(5) In turbulent flow, the temperatures of the
two phases are indistinguishable, so that it
seems possible to perform the analysis under
the condition of T, ~ T .

(6) In contrast to the laminar flow the radiation
shield for comparatively large optical radius
is not appeared which might be attributed to
the eddy diffusivity in turbulent flow.

The numerical computation in this paper has
been performed at the Computer Center, Kyushu
University by FACOM 230-60.
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RADIATIVE HEAT TRANSFER BY FLOWING MULTIPHASE MEDIUM

RAYONNEMENT THERMIQUE PAR UN MILIEU MULTIPHASIQUE EN ECOULEMENT—
III. ANALYSE DU TRANSFERT THERMIQUE D'UN ECOULEMENT TURBULENT DANS UN
TUBE CIRCULAIRE

Résumé—Le transfert thermique par ’écoulement laminaire d’une suspension gazeuse de fines particules
solides et (ou) liquides, a été traité dans les articles précédents par les auteurs, quand le rayonnement
thermique prédomine sur les autres modes de transfert. Dans la présente étude, on a conduit une analyse
de I'écoulement turbulent d’un milieu multiphasique dans un tube circulaire & température pariétale
constante, 'un des problémes pratiques les plus importants.

Cependant I’écoulement turbulent de la suspension gazeuse est compliqué par les comportements
turbulents des particules dispersées et du fluide porteur. En conséquence le modéle considéré a été employé
en tenant compte non seulement du transfert thermique par rayonnement a la phase dispersée mais du
transfert thermique, entre les particules et le fluide envirofinant, associé a la turbulence. Les équations
réduites fondamentales constituent des équations intégro-différentielles simultanées qui sont numérique-
ment résolues par la méthode implicite aux différences finies avec un processus itératif des termes de
rayonnement. Les résultats calculés sur les profils de température et le transfert thermique sont ensuite

examinés en détail.

WARMETRANSPORT DURCH STRAHLUNG IN EINEM FLIESSENDEN VIELPHASIGEN
MEDIUM
TEIL II1: EINE UNTERSUCHUNG DES WARMETRANSPORTES BEI TURBULENTER
STROMUNG IN EINEM KREISFORMIGEN ROHR

Zusammenfassung—In den vorangegangenen Arbeiten wurde der Warmetransport bei laminarer Stromung
einer gasfdrmigen Suspension fest und/oder fliissiger kleiner Teilchen fiir den Fall behandelt, dass die
thermische Strahlung die anderen Arten des Warmetransportes iiberwiegt. In dieser Arbeit wird eine
Untersuchung der turbulenten Strémung des Vielphasenmediums in einem kreisférmigen Rohr mit
konstanter Wandtemperatur durchgefiihrt. Dies ist fiir die Praxis eines der wichtigsten Probleme. Bei
der turbulenten Strémung einer gasformigen Suspension ist jedoch die Verbindung des turbulenten
Verhaltens der dispergierten Teilchen und des Triagerfluids kompliziert. Daher wurde das Modell so
angewandt, dass nicht nur der Warmeiibergang durch Strahlung auf die jeweilige Phase beriicksichtigt
wurde, sondern auch der turbulente Wirmeiibergang zwischen den Teilchen und der umgebenden
Fliissigkeit. Die reduzierten Basisgleichungen bilden simultane Integraldifferentialgleichungen, die
numerisch durch die implizitt Methode der endlichen Differenzen gelost wurden, mit Iteration der
Strahlungsterme. Die berechneten Ergebnisse fiir die Temperaturprofile und den Wirmelibergang
werden noch im Detail gepriift.

JIYYUCTBIA TEIIJIOOBMEH I[IPU TEYEHVM MHOT'O®A3HON CPEIBI.
3. AHAJIU3 TEIIJIOOBMEHA IIPW JIAMUHAPHOM TEYEHUU B
KPYTJION TPYBE

Annoranus—IlepeHoc Tenna NpM JAMUHADHOM TEYEHWHM TrasdoBaBecell TBepAHIX M/MaN
MUAKIX MeJKHMX YaCTHML OMNCAH B paHee onyGIMKOBAHHEIX aBTOPaMi paboTax 1o TEIIIOBOMY
HBIYYEHHIO, [IPEBANMpPYIOIIEMY HAJL BCEMM APYTMMH BHAAMHM MepeHoca Temnja. B panHOM
paboTe paccmaTpuBaeTcA TypOyieHTHOe TedeHUe MHOropasHON Cpefs B Kpyriaolt TpyOe mpu
TOCTOAHHOM TEeMIepaType CTEHKH, 4TO ABIAETCA O4YeHh BAMKHOR IpaKTHUecKolt 3amaueit.
Onuako TypOyJIeHTHOE TeYeHUe rasoB3Becell yCIOKHAETCA B CBASH C PABJIMYHHM MOBeAeHNEM
AMCIIEPCHHX YacTHI{ ¥ Cpedsl. B COOTBETCTBUH C STMM MCHONB3YeTCH YROOHAA MOMeIb,
VYMTHIBAIOWIAA He TOJNBKO NYYMCTHIN NEepeHOC Tella K AuchnepcHoit ¢ase, HO M TermynoobMeH
MEMKIY YaCTMIIAMH M OKpYKaloIue#l HUIKOCTbIO, CBABAHHHIM ¢ TypOyxenTHocTeio. [Ipume-
JeHHHIE OCHOBHHIE YPaBHEHNA ABIAKTCA CHCTeMOl HATerpo-muddepeHIUANbHEX ypaBHeHUM,
KOTOpHIE PEIIAIOTCA YHCIEHHO C MOMOIIbI0 HEABHHIX KOHEYHO-DA3HOCTHHIX CX€M METOMIOM
UTepalyH WIEHOB, YUMTHBAOINX uaiaydenne. [IpoBenen AeTanbHbN aHAIM3 PACCUMTAHHHEIX
pacupeneeHult TeMIepaTypH M TeIIo00MeHa.
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